Maths -Curriculum Progression Map

The curriculum progression for The Oaktree Federation has been designed from the National Curriculum and White Rose Maths. The objectives cover the skills and knowledge children will learn through primary school.

Term I and 2							
	YR	YI	Y2	Y3	Y4	Y5	Y6
Representations	Concrete objects Number blocks Numicon 2-sided counters Bead strings Dice	Concrete objects Number line Tens frames Numicon Base 10 2-sided counters Bead strings Playing cards Dice	Place value chart Number lines Base 10 Part whole Tens frames Numicon 2-sided counters Bead strings Playing cards Dice	Place value chart Number lines Base 10 Part whole Numicon Place value counters 2-sided counters Playing cards Dice	Place value chart Number lines Base 10 Part whole Place value counters Squares 2-sided counters Playing cards Dice	Place value chart Number lines Base 10 Place value counters Part whole Gattegno chart Bar model 2-sided counters Fraction walls Playing cards Dice	Place value chart Number lines Base 10 Place value counters Part whole Gattegno chart Bar model 2-sided counters Fraction walls Playing cards Dice
Key Vocabulary	Numeral Number Partition Quantity Subitise More Less	Fewer Less More Same Greater than Less than Equal to Count on Count backwards Number sentences Fact families 2D and 3D shape names and properties	Partition Tens and ones Estimate Compare Greater than Less than Equal to Edges Shape names (2-D / 3-D) Vertices Symmetry Vertical Pattern	Partition Hundreds, Tens and ones Estimate Compare Greater than Less than Equal to Sum Add Subtract Inverse Multiples Equal groups	Partition Estimate Compare Greater than Less than Equal to Sum Add Subtract Inverse Multiply Divide Product Area $\mathrm{cm}^{2} / \mathrm{m}^{2}$ etc	Digit Value Greater than Less than Equal to Round Ascending Descending Powers 10, 100, 1000 times smaller / bigger Factors Prime Square Cube	Digit Value Greater than Less than Equal to Round Ascending Descending Powers Negative Integer Common multiples Common factors Prime Long division Long multiplication
Place Value	Find, match ad objects which are the same	Term I focus on numbers to 10	Counting count in steps of 2,3 , and 5 from 0 , and in	Counting count from 0 in multiples of $4,8,50$	Counting	Counting count forwards or backwards in steps of	Counting

The Oak Tree
Federation

The Oak Tree
Federation

		given a number identify one more and one less	use place value and number facts to solve problems		value of each digit in a four-digit number ($1,000 \mathrm{~s}, 100 \mathrm{~s}, 10 \mathrm{~s}$, and Is) solve number and practical problems that involve all of the above and with increasingly large positive numbers		
Addition and subtraction		For Term I work with numbers to 10 Number bonds represent and use number bonds and related subtraction facts Mental calculation Written methods read, write and interpret mathematical statements involving addition (+), subtraction $(-)$ and equals ($=$) signs Inverse operations, estimating and checking answers	Number bonds recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 Mental calculation add and subtract numbers using concrete objects, pictorial representations, and mentally, including: - a two-digit number and Is - a two-digit number and 10 s - 2 two-digit numbers - adding 3 onedigit numbers Written methods	Number bonds Mental calculation add and subtract numbers mentally, including: - a three-digit number and Is - a three-digit number and 10 s - a three-digit number and 100s Written methods add and subtract numbers with up to 3 digits, using formal written methods of columnar addition and subtraction Inverse operations, estimating and checking answers	Number bonds Mental calculation Written methods add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate Inverse operations, estimating and checking answers estimate and use inverse operations to check answers to a calculation Problem solving solve addition and subtraction two-step	Number bonds Mental calculation add and subtract numbers mentally with increasingly large numbers Written methods add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction) Inverse operations, estimating and checking answers use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy	Number bonds Mental calculation perform mental calculations, including with mixed operations and large numbers use their knowledge of the order of operations to carry out calculations involving the 4 operations Written methods Inverse operations, estimating and checking answers use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

The Oak Tree Federation

		Problem solving solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=$?-9	Inverse operations, estimating and checking answers show that addition of 2 numbers can be done in any order (commutative) and subtraction of I number from another cannot recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems Problem solving solve problems with addition and subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures	estimate the answer to a calculation and use inverse operations to check answers Problem solving solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction	problems in contexts, deciding which operations and methods to use and why	Problem solving solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why	Problem solving solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
Multiplication and Division				Multiplication and division facts RECAP: count from 0 in multiples of 4, 8 ,	Multiplication and division facts recall multiplication and division facts for	Multiplication and division facts RECAP: count forwards or backwards	Multiplication and division facts Mental calculation

The Oak Tree
Federation

						numbers, prime factors and composite (nonprime) numbers Order of operations Inverse operations, estimating and checking answers Problem solving solve problems involving multiplication and division, including using their knowledge of factors and multiples, squares and cubes	primes, square and cube numbers identify common factors, common multiples and prime numbers Order of operations use their knowledge of the order of operations to carry out calculations involving the 4 operations Inverse operations, estimating and checking answers Problem solving solve problems involving addition, subtraction, multiplication and division
Fra						Counting in fractional steps Recognising fractions identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths recognise mixed numbers and improper fractions and convert	Counting in fractional steps Recognising fractions Comparing fractions compare and order fractions, including fractions > 1 Calculating fractions use common factors to simplify fractions; use common multiples to

						from one form to the other Comparing fractions compare and order fractions whose denominators are all multiples of the same number Calculating fractions add and subtract fractions with the same denominator, and denominators that are multiples of the same number Problem solving	express fractions in the same denomination add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions multiply simple pairs of proper fractions, writing the answer in its simplest form divide proper fractions by whole numbers Problem solving
Measuremen					Comparing and Estimating: Measuring and Calculating: find the area of rectilinear shapes by counting squares		Comparing and Estimating: Measuring and Calculating: solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate use, read, write and convert between standard units, converting measurements of

						length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places convert between miles and kilometres
Geom	Identifying shapes and their properties recognise and name common 2-D and 3D shapes, including: 2-D shapes [for example, rectangles (including squares), circles and triangles] 3-D shapes [for example, cuboids (including cubes), pyramids and spheres]. Identifying shapes and their properties	Identifying shapes and their properties identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line. Identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces. identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid]. Recognise and name common 3-D shapes (for example cubes, pyramids and spheres)				

Term 3 and 4							
	YR	YI	Y2	Y3	Y4	Y5	Y6
Representations	Scales Tens frames Number blocks 3D shapes Number cards Containers Dice Part-whole 2-sided counters	Tens frames Part- whole models Rulers Scales 2-sided counters Playing cards Dice	Money Rulers Counters Arrays 2-sided counters Playing cards Dice	Number lines Place value columns Part - whole models Rulers 2-sided counters Cuisenaire rods	Counters Squared paper Place value columns 2-sided counters Cuisenaire rods	Counters Squared paper Place value columns Two-way tables Timetables Line graphs 2-sided counters Cuisenaire rods	Pie charts Line graphs Counters 2-sided counters Cuisenaire rods
Key Vocabulary	Nothing there All gone The same as More Fewer Tall Thin Narrow Wide Shallow Equal to Heavier than Lighter than Heaviest Lightest Subitise Compare 3D shape names	long/short, longer/shorter, tall/short double/half heavy/light heavier than lighter than full/empty more than less than half half full quarter quicker, slower, earlier, later	Multiply Divide Array long/short, longer/shorter, tall/short degrees (${ }^{\circ} \mathrm{C}$) grams kilograms pounds pence	Scaling Multiply Divide Exchange Length $\mathrm{cm} / \mathrm{mm} / \mathrm{m}$ Twice Equivalent Perimeter Numerator Denominator Tenths	Multiples Factors Factor pairs Formal written method Efficient methods Perimeter cm / m / Rectilinear shapes Polygons Area Compare	Short division Compound shapes Estimate Area Rectilinear shapes Perimeter Polygons	Line graphs Mean Average Pie charts Percentages
Addition and subtraction		Work within numbers to 20 Number bonds represent and use number bonds and related subtraction facts					

		Mental calculation Written methods read, write and interpret mathematical statements involving addition (+), subtraction $(-)$ and equals (=) signs Inverse operations, estimating and checking answers Problem solving solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as 7 = ? - 9					
Multiplication and Division			Multiplication and division facts recall and use multiplication and division facts for the	Multiplication and division facts Mental calculation			

The Oak Tree
Federation

The Oak Tree Federation

			solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.	division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects		combination of these, including understanding the meaning of the equals sign solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates	
Fractions				Counting in fractional steps count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10 Recognising fractions recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators Comparing fractions Calculating fractions	Counting in fractional steps count up and down in hundredths; recognise that hundredths arise when dividing an object by 100 and dividing tenths by 10 Recognising fractions recognise and show, using diagrams, families of common equivalent fractions Comparing fractions recognise and show, using diagrams, equivalent fractions with small denominators Calculating fractions	Counting in fractional steps Recognising fractions Comparing fractions Calculating fractions multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams Problem solving	Counting in fractional steps Recognising fractions Comparing fractions Calculating fractions associate a fraction with division and calculate decimal fraction equivalents [for example, 0.375] for a simple fraction [for example, 3/8] Problem solving recall and use equivalences between simple fractions, decimals and percentages, including in different contexts

The Oak Tree
Federation

				Problem solving	add and subtract fractions with the same denominator Problem solving solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number		
Decimals and Percentages					Comparing decimals Rounding including decimals Equivalence (including fractions, decimals and percentages) Multiplication and division of decimals find the effect of dividing a one- or twodigit number by 10 and 100 , identifying the value of the digits in the answer as ones, tenths and hundredths Problem solving	Comparing decimals read, write, order and compare numbers with up to three decimal places Rounding including decimals round decimals with two decimal places to the nearest whole number and to one decimal place Equivalence (including fractions, decimals and percentages) read and write decimal numbers as fractions [for example, 0.71 = $10071]$	Comparing decimals identify the value of each digit in numbers given to three decimal places and multiply and divide numbers by 10 , 100 and 1000 giving answers up to three decimal places Rounding including decimals Equivalence (including fractions, decimals and percentages) Multiplication and division of decimals multiply one-digit numbers with up to two decimal places by whole numbers

						recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100 , and as a decimal Multiplication and division of decimals Problem solving solve problems involving number up to three decimal places solve problems which require knowing percentage and decimal equivalents of $\frac{1}{2} \frac{1}{4} \frac{1}{5} \frac{2}{5} \frac{4}{5}$ and those fractions with a denominator of a multiple of 10 or 25.	use written division methods in cases where the answer has up to two decimal places Problem solving solve problems which require answers to be rounded to specified degrees of accuracy solve problems involving the calculation of percentages [for example, of measures and such as 15% of 360] and the use of percentages for comparison Ratio and Proportion solve problems involving the relative sizes of 2 quantities where missing values can be found by using integer multiplication and division facts solve problems involving similar shapes where the scale factor is known or can be found solve problems involving unequal sharing and grouping using

The Oak Tree Federation

| Statistics | | | | | Interpreting,
 Constructing and |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Presenting Data | | | | | |
| interpret and construct | | | | | |
| pie charts and lie | | | | | |
| graphs and use these to | | | | | |
| solve problems | | | | | |

Term 5 and 6							
	YR	YI	Y2	Y3	Y4	Y5	Y6
Representations	Tens frame Bead strings Dice Dominoes Towers of cubes Rekenreks Number tracks Tangrams Geo boards	Clocks Calendars Grids Arrays Counters Number lines Bar models Visual fraction representations	Bar models Visual fraction representations Clocks Graphs (pictograms) Tally charts	Bar models Visual fraction representations 2-D shapes 3-D shapes Angles Rulers Clocks Bar graphs Pictograms Tables	Place value charts Money Number lines Clocks Calendars Pictograms Tables Line graphs	Place value charts Scales Rulers Number lines Protractors Timetables / tables Line graphs Thermometers	Circles Co-ordinate grids Nets of shapes Mirrors Tracing paper
Key Vocabulary	Subitise Count on Count back Positional language Add Subtract Twice as many Double Sharing Grouping Even Odd	(un)equal groups Half / quarter Hour / minute / seconds Half an hour 0'clock Quarter past/to Days Months Full turn Half turn Quarter turn Three-quarter turn Clockwise Anti-clockwise Positional language	Half / quarter / third (non) unit fractions Half / quarter Hour / minute / seconds Half an hour O'clock Quarter past/to < > = Data Full turn Half turn Quarter turn Three-quarter turn Clockwise Anti-clockwise	Horizontal Vertical Perpendicular Parallel Half-turn Three quarters Complete turn Greater than Less than Acute Obtuse Right angle Degrees names of shapes Hour / minute / seconds Data (non) unit fractions	Decimal Tenths Hundredths Round analogue digital hours / minutes / seconds / years / months/ weeks / days 12 / 24 hour clock a.m. / p.m. Acute Obtuse Right angle Degrees quadrilaterals triangles	$\mathrm{mm} / \mathrm{cm} / \mathrm{m} / \mathrm{km}$ ml / l g / kg Metric Imperial Inches Pounds Pints Negative line graph tables timetables Acute Obtuse Right angle Degrees	Circles Radius Diameter Circumference Co-ordinates Quadrants Translate Reflect Protractor Degrees Nets Vertical Horizontal Straight line
Place Value	Build numbers beyond 10 Count patterns beyond 10					Counting interpret negative numbers in context, count forwards and backwards with positive	

	Spatial reasoning (I) - select and				and negative whole numbers, including through 0	
Multiplication and Division	rotate shapes in a given space. Match, rotate, manipulate - use positional language Adding more Taking away Spatial reasoning (2) - combining shapes to make	Problem solving solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.				
Fractions	new shapes Compose and decompose combining shapes in different ways Doubling Sharing \& grouping Even \& odd Spatial reasoning (3) - replicate simple constructions, models, real places and places in stories	Counting in fractional steps Recognising fractions recognise, find and name a half as one of two equal parts of an object, shape or quantity recognise, find and name a quarter as one of four equal parts of an object, shape or quantity. Comparing fractions	Counting in fractional steps Recognising fractions recognise, find, name and write fractions I/3 I/3 $2 / 4$ and $3 / 4$ of a length, shape, set of objects or quantity Comparing fractions write simple fractions for example, $1 / 2$ of 6 $=3$ and recognise the equivalence of $2 / 4$ and $1 / 2$	Counting in fractional steps Recognising fractions recognise, find and write fractions of a discrete set of objects: unit fractions and nonunit fractions with small denominators recognise and use fractions as numbers: unit fractions and nonunit fractions with small denominators		

					of any number of tenths or hundreds recognise and write decimal equivalents to $1 / 4,1 / 2,3 / 4$ Problem solving solve simple measure and money problems involving fractions and decimals to 2 decimal places		
Measurement		Comparing and Estimating: compare, describe and solve practical problems for: - time Measuring and Calculating: measure and begin to record the following: - time (hours, minutes, seconds) sequence events in chronological order using language [for example, before and after, next, first, today, yesterday, tomorrow,	Comparing and Estimating compare and sequence intervals of time Measuring and Calculating: tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times know the number of minutes in an hour and the number of hours in a day.	Comparing and Estimating estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, a.m./p.m., morning, afternoon, noon and midnight compare durations of events Measuring and Calculating: add and subtract amounts of money to give change, using both $£$ and p	Comparing and Estimating: estimate, compare and calculate different measures, including money in pounds and pence Measuring and Calculating: read, write and convert time between analogue and digital I2- and 24-hour clocks solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days.	Comparing and Estimating: estimate volume [for example, using 1 cm 3 blocks to build cuboids (including cubes)] and capacity [for example, using water] understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints Measuring and Calculating: convert between different units of metric measure (for example, kilometre and metre; centimetre and metre; centimetre and	

		morning, afternoon and evening] recognise and use language relating to dates, including days of the week, weeks, months and years tell the time to the hour and half past the hour and draw the hands on a clock face to show these times. recognise and know the value of different denominations of coins and notes		in practical contexts tell and write the time from an analogue clock, including using Roman numerals from I to XII, and I2hour and 24-hour clocks know the number of seconds in a minute and the number of days in each month, year and leap year		millimetre; gram and kilogram; litre and millilitre) solve problems involving converting between units of time use all four operations to solve problems involving measure [for example, length, mass, volume, money] using decimal notation, including scaling.	
Geometry I Position and direction		Identifying shapes and their properties Drawing and constructing Comparing and classifying: Angles: Position and direction describe position, direction and	Identifying shapes and their properties Drawing and constructing Comparing and classifying: order and arrange combinations of mathematical objects in patterns and sequences use mathematical vocabulary to	Identifying shapes and their properties identify horizontal and vertical lines and pairs of perpendicular and parallel lines. Drawing and constructing draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D	Identifying shapes and their properties identify lines of symmetry in 2-D shapes presented in different orientations Drawing and constructing complete a simple symmetric figure with respect to a specific line of symmetry.	Identifying shapes and their properties identify 3-D shapes, including cubes and other cuboids, from 2-D representations distinguish between regular and irregular polygons based on reasoning about equal sides and angles. Drawing and constructing	Identifying shapes and their properties recognise, describe and build simple 3D shapes, including making nets Drawing and constructing draw 2-D shapes using given dimensions and angles

The Oak Tree
Federation

							and find missing angles.
Statistics			Interpreting, Constructing and Presenting Data interpret and construct simple pictograms, tally charts, block diagrams and simple tables ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity ask and answer questions about totalling and comparing categorical data.	Interpreting, Constructing and Presenting Data interpret and present data using bar charts, pictograms and tables solve one-step and two-step questions [for example, 'How many more?' and 'How many fewer?'] using information presented in scaled bar charts and pictograms and tables.	Interpreting, Constructing and Presenting Data interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs. solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs	Interpreting, Constructing and Presenting Data solve comparison, sum and difference problems using information presented in a line graph complete, read and interpret information in tables, including timetables.	

